Database Schema Matching Using Machine Learning with Feature Selection
نویسندگان
چکیده
Schema matching, the problem of finding mappings between the attributes of two semantically related database schemas, is an important aspect of many database applications such as schema integration, data warehousing, and electronic commerce. Unfortunately, schema matching remains largely a manual, labor-intensive process. Furthermore, the effort required is typically linear in the number of schemas to be matched; the next pair of schemas to match is not any easier than the previous pair. In this paper we describe a system, called Automatch, that uses machine learning techniques to automate schema matching. Based primarily on Bayesian learning, the system acquires probabilistic knowledge from examples that have been provided by domain experts. This knowledge is stored in a knowledge base called the attribute dictionary. When presented with a pair of new schemas that need to be matched (and their corresponding database instances), Automatch uses the attribute dictionary to find an optimal matching. We also report initial results from the Automatch project.
منابع مشابه
Automatch Revisited
We revisit the Autoplex and Automatch projects from 2001–2005, and in particular the results reported in the paper Database Schema Matching Using Machine Learning with Feature Selection, presented in the 14th International Conference on Advanced Information Systems Engineering (2002). We provide the motivation and background for these projects, examine their impact a decade later, and sketch po...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملSchema Matching Using Machine Learningwith
Schema matching, the problem of nding mappings between the attributes of two semantically related database schemas, is an important aspect of many database applications such as schema integration, data warehousing, and electronic commerce. Unfortunately, schema matching remains largely a manual, labor-intensive process. Furthermore, the eeort required is typically linear in the number of schema...
متن کاملSelecting Effective Features and Relations for Efficient Multi-Relational Classification
Feature selection is an essential data processing step to remove irrelevant and redundant attributes for shorter learning time, better accuracy, and better comprehensibility. A number of algorithms have been proposed in both data mining and machine learning areas. These algorithms are usually used in a single table environment, where data are stored in one relational table or one flat file. The...
متن کاملDiagnosis of Heart Disease Based on Meta Heuristic Algorithms and Clustering Methods
Data analysis in cardiovascular diseases is difficult due to large massive of information. All of features are not impressive in the final results. So it is very important to identify more effective features. In this study, the method of feature selection with binary cuckoo optimization algorithm is implemented to reduce property. According to the results, the most appropriate classification fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002